

2018 2nd International Conference on Electrical Engineering & Informatics

PROCEEDINGS

"Toward the Most Efficient Way of Making and Dealing with Future Electrical Power System and Big Data Analysis"

> IEEE Catalog Number: CFP18RPC-ART ISBN : 978-1-5386-6000-3

16th – 17th October 2018, Batam - Indonesia

Organized by

Department of Electrical Engineering Faculty of Engineering Universitas Riau, Indonesia

Technical Co-Sponsor :

PROCEEDINGS

The 2018 2nd International Conference on Electrical Engineering and Informatics

"Toward the Most Efficient Way of Making and Dealing with Future Electrical Power System and Big Data Analysis"

> Batam, Indonesia October 16th – 17th, 2018

Copyright -

Copyright and Reprint Permission

2018 2nd International Conference on Electrical Engineering and Informatics (ICon EEI 2018)

Nagoya Hill Hotel, Batam, Indonesia, 16th – 17th October 2018

Copyright and Reprint Permission: Abstracting is permitted with credit to the source. Libraries are permitted to photocopy beyond the limit of U.S. copyright law for private use of patrons those articles in this volume that carry a code at the bottom of the first page, provided the per-copy fee indicated in the code is paid through Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923.

For reprint or republication permission, email to IEEE Copyrights Manager at pubspermissions@ieee.org. All rights reserved. Copyright ©2018 by IEEE.

IEEE catalog number: CFP18RPC-ART . ISBN: 978-1-5386-6000-3

Copyright ©2018 by Institute of Electrical and Electronics Engineers, Inc. All rights reserved

Conference Information —

Conference Name

2018 2nd International Conference on Electrical Engineering and Informatics (ICon EEI 2018)

Conference Logo

International Conference on Electrical Engineering and Informatics

IEEE Conference ID	#44554
Dates	October 16 th (Tuesday) – 17 th (Wednesday) October 2018
Host and Organizer	Department of Electrical Engineering Faculty of Engineering Universitas Riau, Indonesia
Technical co-sponsor	IEEE Indonesia Section
	IEEE Communications Society Indonesia Chapter
Venue	Nagoya Hill Hotel, Jl. Teuku Umar, Superblok Nagoya Hill Batam, Kepulauan Riau, Indonesia
Dates	October 16 th (Tuesday) – 17 th (Wednesday) October 2018
Official Language	English
Secretariat	Department of Electrical Engineering, Faculty of Engineering, Universitas Riau Kampus Bina Widya Jalan HR Soebrantas Km 12.5 Pekanbaru, Riau, Indonesia Phone +62 761-66595 Fax. +62 761-66596 Website ee.ft.unri.ac.id Email ee.ft@unri.ac.id

Copyright and Reprint Permission

2018 2nd International Conference on Electrical Engineering and Informatics (ICon EEI 2018)

Nagoya Hill Hotel, Batam, Indonesia, 16th – 17th October 2018

Copyright and Reprint Permission: Abstracting is permitted with credit to the source. Libraries are permitted to photocopy beyond the limit of U.S. copyright law for private use of patrons those articles in this volume that carry a code at the bottom of the first page, provided the per-copy fee indicated in the code is paid through Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923.

For reprint or republication permission, email to IEEE Copyrights Manager at pubs-permissions@ieee.org. All rights reserved. Copyright ©2018 by IEEE.

IEEE catalog number: CFP18RPC-ART . ISBN: 978-1-5386-6000-3

Copyright ©2018 by Institute of Electrical and Electronics Engineers, Inc. All rights reserved

Committees

Advisory Board

Aras Mulyadi	Universitas Riau, Indonesia
Ari Sandyavitri	Universitas Riau, Indonesia
Kohei Aray	Saga University, Japan
Rinaldi Dalimi	Dewan Energi Nasional, Indonesia
Zainal A. Hasibuan	APTIKOM, Indonesia
Tharek Abd. Rahman	Universiti Teknologi Malaysia
Mohd. Wazir Mustafa	Universiti Teknologi Malaysia
Adit Kurniawan	Institut Teknologi Bandung
Fitri Yuli Zulkifli	IEEE Indonesia Section Chair
Khoirul Anwar	Telkom University, Indonesia
Yusnita Rahayu	General Chair of ICon EEI 2016

Organizing Committee

General Chair Iswadi Hasyim Rosma	Unversitas Riau, Indonesia
General Co-Chair Feri Candra	Unversitas Riau, Indonesia
Treasurer and Finance (Chair
Fri Murdiya	Unversitas Riau, Indonesia
Technical Program Chai	ir
Dewi Nasien	Unversitas Riau, Indonesia
Technical Program Co-C	Chair
Indra Yasri	Unversitas Riau, Indonesia
Publication Chair Azriyenni Azhari Zakri	Unversitas Riau, Indonesia
International Liaison Cl	hair
Yusnita Rahayu	Unversitas Riau, Indonesia

Website and Social Media Chair

Salhazan Nasution	Unversitas Riau, Indonesia
Ardi Nugraha	Unversitas Riau, Indonesia
Rahmat Rizal	Unversitas Riau, Indonesia

Technical Program Committee

Chair Dewi Nasien	Universitas Riau, Indonesia
Co-Chair Indra Yasri	Unversitas Riau, Indonesia
Member	
Hussein Shareef	College of Engineering United Arab Emirate University, UEA
Abubakar Abdulkarim	University of Ilorin, Nigeria
Ade Gafar Abdullah	Universitas Pendidikan Indonesia, Indonesia
Adrianti Nasir	Universitas Andalas, Indonesia
Azriyenni Azhari Zakri	Universitas Riau, Indonesia
Alex Wenda	UIN Riau, Indonesia
Bernardi Pranggono	Sheffield Hallam University, UK
Bowen Zhou	Northeastern University, China
Jasrul Jamani Jamian	Universiti Teknologi Malaysia, Malaysia
Jafaru Usman	University of Maiduguri, Nigeria
Beenish Sultana	NED University of Engineering & Technology, Pakistan
Dahliyusmanto	Universitas Riau, Indonesia
Feri Candra	Universitas Riau, Indonesia
Fri Murdiya	Universitas Riau, Indonesia
Hamzah Eteruddin	Universitas Lancang Kuning, Indonesia
Harris Simaremare Iswadi Hasyim Rosma	UIN Riau, Indonesia Universitas Riau, Indonesia

Iwantono Bermawi	Universitas Riau, Indonesia
Muhammad Syamsu Iqbal	Universitas Mataram, Indonesia
Muhammad Yusuf	Universitas Trunojoyo, Indonesia
Norhashimah b Mohd Saad	Universiti Teknikal Malaysia Melaka,
	Malaysia
Yanuar Zulardiansyah	Universiti Malaysia Serawak, Malaysia
Yessi Jusman	Universitas Abdurrab, Indonesia
Yusnita Rahayu	Universitas Riau, Indonesia

Local Arrangement Committee

Secretariat

Noveri L. Marpaung	Universitas Riau, Indonesia
Linna Okta Sari	Universitas Riau, Indonesia

Registration Desk

Feranita Ery Safrianti Universitas Riau, Indonesia Universitas Riau, Indonesia

Events and Location

Budhi Anto Febrizal Irsan Taufik Ali

Documentation

Dian Yayan Sukma Eddy Hamdani

Equipment

Rahyul Amri Dedi Permana Jatwoko Ramdani

Transportation

Firdaus Edy Ervianto Nurhalim

Secretariat

Dahliyusmanto Amir Hamzah Suwitno Universitas Riau, Indonesia Universitas Riau, Indonesia Universitas Riau, Indonesia

Universitas Riau, Indonesia Universitas Riau, Indonesia

Universitas Riau, Indonesia Universitas Riau, Indonesia Universitas Riau, Indonesia Universitas Riau, Indonesia

Universitas Riau, Indonesia Universitas Riau, Indonesia Universitas Riau, Indonesia

Universitas Riau, Indonesia Universitas Riau, Indonesia Universitas Riau, Indonesia

Authors	Session title	Title	Page
	А		
Abinash Gaya	Electronics, Control System and Telecommunication	Performance Analysis of a Dielectric Resonator Antenna with Different Feeding Technique for 5G Communication	92
Abubakar Abdulkarim	Electrical Power System, Renewable Energy and High Voltage Engineering	Analysis of Single Axis Sun Tracker System to Increase Solar Photovoltaic Energy Production in the Tropics	183
Achmad Hidayatno	Informatics, Computer Science, Computer Engineering, Information Technology	Design of Smart Open Parking Using Background Subtraction in the IoT Architecture	7
Adit Kurniawan	Electronics, Control System and Telecommunication	New Design of High-Gain Beam-Steerable Dipole Antenna Array for 5G Smartphone Applications	114
Aghus Sofwan	Electronics, Control System and Telecommunication	Measurement Design of Sensor Node for Landslide Disaster Early Warning System	86
Aghus Sofwan	Informatics, Computer Science, Computer Engineering, Information Technology	Design of Smart Open Parking Using Background Subtraction in the IoT Architecture	7
Ahmad Romadan	Electronics, Control System and Telecommunication	New Design of High-Gain Beam-Steerable Dipole Antenna Array for 5G Smartphone Applications	114
Akbarizan Akbarizan	Informatics, Computer Science, Computer Engineering, Information Technology	Using Bayesian Network for Determining the Recipient of Zakat in BAZNAS Pekanbaru	12
Ali Akbar	Informatics, Computer Science, Computer Engineering, Information Technology	Development of E-Commerce Applications Based on RAD Methods for MSMEs Furniture Business in Central Java	75
Amarilis Yanuarifiani	Informatics, Computer Science, Computer Engineering, Information Technology	Building Domain Ontology from Semi- formal Modelling Language: BPMN	57
Amir Hamzah	Electrical Power System, Renewable Energy and High Voltage Engineering	Web Based Wind Energy Conversion System Monitoring	179
Amir Hamzah	Electrical Power System, Renewable Energy and High Voltage Engineering	Design and Analysis of Variable-Reluctance Stepping Motor as Actuator Element of New Type Automatic Transfer Switch	165
Amun Amri	Electrical Power System, Renewable Energy and High Voltage Engineering	Barrier Discharge In Magnetic Field: The Effect of Magnet Position Induced Discharge in the Gap	175

Authors	Session title	Title	Page
Anhar Anhar	Electronics, Control System and Telecommunication	A Survey on Medium Access Control (MAC) for Clustering Wireless Sensor Network	125
Aqeel S. Jaber	Electrical Power System, Renewable Energy and High Voltage Engineering	Short Term Load Forecasting for Electrical Dispatcher of Baghdad City Based on SVM- PSO Method	140
Ari Sandhyavitri	Electronics, Control System and Telecommunication	Early Warning Systems Using Fire Sensors, Wireless and SMS Technology	108
Aslimeri MT	Electrical Power System, Renewable Energy and High Voltage Engineering	Optimum Torque Control of Stand Alone Wind Turbine Generator System Fed Single Phase Boost Inverter	148
Auliya Syaf	Informatics, Computer Science, Computer Engineering, Information Technology	Comparison of the Effectiveness of Certainty Factor VS Dempster-Shafer in the Determination of the Adolescent Learning Styles	46
Ayuamira Zahari	Electrical Power System, Renewable Energy and High Voltage Engineering	The Effect of Pressure and Gap Distance to AC Breakdown Behavior of SF6/N2 Gas Mixtures	144
Azhagumurugan R	Electronics, Control System and Telecommunication	FEXT Analysis and Its Mitigation Using Double-slit Complementary Split-Ring Resonators	98
Azmi Saleh	Electrical Power System, Renewable Energy and High Voltage Engineering	Comparison of MPPT Fuzzy Logic Controller Based on Perturb and Observe (P&O) and Incremental Conductance (Inc) Algorithm	154
Azriyenni Azhari Zakri	Electrical Power System, Renewable Energy and High Voltage Engineering	Analysis of Single Axis Sun Tracker System to Increase Solar Photovoltaic Energy Production in the Tropics	183
Azriyenni Azhari Zakri	Electrical Power System, Renewable Energy and High Voltage Engineering	Extract Fault Signal via DWT and Penetration of SVM for Fault Classification at Power System Transmission	191
	В		
Barri Anand	Electrical Power System, Renewable Energy and High Voltage Engineering	The Implementation and Analysis of Dual Axis Sun Tracker System to Increase Energy Gain of Solar Photovoltaic	187
Bayu Chaniago	Electrical Power System, Renewable Energy and High Voltage Engineering	Web Based Wind Energy Conversion System Monitoring	179
Boy Ihsan	Electrical Power System, Renewable Energy and High Voltage Engineering	Extract Fault Signal via DWT and Penetration of SVM for Fault Classification at Power System Transmission	191

Authors	Session title	Title	Page
Budhi Anto	Electrical Power System, Renewable Energy and High Voltage Engineering	The Implementation and Analysis of Dual Axis Sun Tracker System to Increase Energy Gain of Solar Photovoltaic	187
Budhi Anto	Electrical Power System, Renewable Energy and High Voltage Engineering	Barrier Discharge In Magnetic Field: The Effect Of Magnet Position Induced Discharge In The Gap	175
Budhi Anto	Electrical Power System, Renewable Energy and High Voltage Engineering	Design and Analysis of Variable-Reluctance Stepping Motor as Actuator Element of New Type Automatic Transfer Switch	165
	D		
Dadang Redantan	Electrical Power System, Renewable Energy and High Voltage Engineering	Analysis of Peltier Characteristic and Cold Side Treatment for Thermoelectric Generator Module at Brick Kiln Furnace	134
Dedy Fermana	Electronics, Control System and Telecommunication	Early Warning Systems Using Fire Sensors, Wireless and SMS Technology	108
Delsavonita Delsavonita	Informatics, Computer Science, Computer Engineering, Information Technology	Off-line Handwritten Korean Letter Using Principle Component Analysis and Back Propagation Neural Network	72
Deni Yulianti	Informatics, Computer Science, Computer Engineering, Information Technology	New Feature Vector from Freeman Chain Code for Handwritten Roman Character Recognition	67
Deni Yulianti	Informatics, Computer Science, Computer Engineering, Information Technology	Off-line Handwritten Korean Letter Using Principle Component Analysis and Back Propagation Neural Network	72
Dewi Nasien	Informatics, Computer Science, Computer Engineering, Information Technology	New Feature Vector from Freeman Chain Code for Handwritten Roman Character Recognition	67
Dewi Nasien	Informatics, Computer Science, Computer Engineering, Information Technology	Virtual World Environment Design for Vidyanusa e-Learning System	51
Dewi Nasien	Informatics, Computer Science, Computer Engineering, Information Technology	Intelligent Decision Support System Using Certainty Factor Method for Selection Student Career	18
Dewi Nasien	Informatics, Computer Science, Computer Engineering, Information Technology	Off-line Handwritten Korean Letter Using Principle Component Analysis and Back Propagation Neural Network	72
Dian Yayan Sukma	Electrical Power System, Renewable Energy and High Voltage Engineering	Analysis of Single Axis Sun Tracker System to Increase Solar Photovoltaic Energy Production in the Tropics	183

Authors	Session title	Title	Page
Diki Arisandi	Informatics, Computer Science, Computer Engineering, Information Technology	Comparison of the Effectiveness of Certainty Factor VS Dempster-Shafer in the Determination of the Adolescent Learning Styles	46
Dini Nurmalasari	Informatics, Computer Science, Computer Engineering, Information Technology	Social Media Sentiment Analysis Using K- Means and Naïve Bayes Algorithm	24
	E		
Eddy Hamdani	Electrical Power System, Renewable Energy and High Voltage Engineering	Barrier Discharge In Magnetic Field: The Effect Of Magnet Position Induced Discharge In The Gap	175
Eddy Hamdani	Electrical Power System, Renewable Energy and High Voltage Engineering	Design and Analysis of Variable-Reluctance Stepping Motor as Actuator Element of New Type Automatic Transfer Switch	165
Edy Ervianto	Electrical Power System, Renewable Energy and High Voltage Engineering	Barrier Discharge In Magnetic Field: The Effect Of Magnet Position Induced Discharge In The Gap	175
Eko Handoyo	Informatics, Computer Science, Computer Engineering, Information Technology	Design of Smart Open Parking Using Background Subtraction in the IoT Architecture	7
Ery Safrianti	Electrical Power System, Renewable Energy and High Voltage Engineering	Analysis of Single Axis Sun Tracker System to Increase Solar Photovoltaic Energy Production in the Tropics	183
Ery Safrianti	Electronics, Control System and Telecommunication	Microstrip Antenna Design H-Shaped Planar Array 4 Elements Using Circular Slot for Fixed WiMAX Network 3.5 GHz Frequency	119
	F		
Febrizal Ujang	Electronics, Control System and Telecommunication	A Single DD-MZM for Generating Vestigial Sideband Modulation Scheme in Radio over Fiber Systems	130
Febrizal Ujang	Electronics, Control System and Telecommunication	A Survey on Medium Access Control (MAC) for Clustering Wireless Sensor Network	125
Feoni Yulia	Informatics, Computer Science, Computer Engineering, Information Technology	Social Media Sentiment Analysis Using K- Means and Naïve Bayes Algorithm	24
Feranita Jalil	Electronics, Control System and Telecommunication	Microstrip Antenna Design H-Shaped Planar Array 4 Elements Using Circular Slot for Fixed WiMAX Network 3.5 GHz Frequency	119
Feri Candra	Informatics, Computer Science, Computer Engineering, Information Technology	Off-line Handwritten Korean Letter Using Principle Component Analysis and Back Propagation Neural Network	72

Authors	Session title	Title	Page
Fri Murdiya	Electrical Power System, Renewable Energy and High Voltage Engineering	Application of Molecular Dynamics Study and Homo Lumo Calculation on the Ionized Air for High Voltage Engineering	171
Fri Murdiya	Electrical Power System, Renewable Energy and High Voltage Engineering	Barrier Discharge In Magnetic Field: The Effect Of Magnet Position Induced Discharge In The Gap	175
Fri Murdiya	Electrical Power System, Renewable Energy and High Voltage Engineering	Design and Analysis of Variable-Reluctance Stepping Motor as Actuator Element of New Type Automatic Transfer Switch	165
	G		
Gunawan Wibisono	Electronics, Control System and Telecommunication	A Single DD-MZM for Generating Vestigial Sideband Modulation Scheme in Radio over Fiber Systems	130
Gustientiedina Gustientiedina	Informatics, Computer Science, Computer Engineering, Information Technology	Intelligent Decision Support System Using Certainty Factor Method for Selection Student Career	18
	н		
Haji Gussyafri	Electrical Power System, Renewable Energy and High Voltage Engineering	Web Based Wind Energy Conversion System Monitoring	179
Hidayat Zainuddin	Electrical Power System, Renewable Energy and High Voltage Engineering	The Effect of Pressure and Gap Distance to AC Breakdown Behavior of SF6/N2 Gas Mixtures	144
Hikmah Putra	Electronics, Control System and Telecommunication	New Design of High-Gain Beam-Steerable Dipole Antenna Array for 5G Smartphone Applications	114
	1		
lchsan Maulana Putra	Electrical Power System, Renewable Energy and High Voltage Engineering	Analysis of Single Axis Sun Tracker System to Increase Solar Photovoltaic Energy Production in the Tropics	183
lis Afrianty	Informatics, Computer Science, Computer Engineering, Information Technology	The Effect of Class Imbalance Against LVQ Classification	42
Iswadi Hasyim Rosma	Electrical Power System, Renewable Energy and High Voltage Engineering	Analysis of Single Axis Sun Tracker System to Increase Solar Photovoltaic Energy Production in the Tropics	183
Iswadi Hasyim Rosma	Electrical Power System, Renewable Energy and High Voltage Engineering	The Implementation and Analysis of Dual Axis Sun Tracker System to Increase Energy Gain of Solar Photovoltaic	187
Iswadi Hasyim Rosma	Electrical Power System, Renewable Energy and High Voltage Engineering	Extract Fault Signal via DWT and Penetration of SVM for Fault Classification at Power System Transmission	191

Authors	Session title	Title	Page
Iswadi Hasyim Rosma	Electrical Power System, Renewable Energy and High Voltage Engineering	Web Based Wind Energy Conversion System Monitoring	179
Iwan Kurniawan	Electrical Power System, Renewable Energy and High Voltage Engineering	Web Based Wind Energy Conversion System Monitoring	179
	J		
Jafaru Usman	Electrical Power System, Renewable Energy and High Voltage Engineering	Extract Fault Signal via DWT and Penetration of SVM for Fault Classification at Power System Transmission	191
Jamaludin Mohd Wari	Electrical Power System, Renewable Energy and High Voltage Engineering	The Effect of Pressure and Gap Distance to AC Breakdown Behavior of SF6/N2 Gas Mixtures	144
Jamarrintan Asmawi	Electrical Power System, Renewable Energy and High Voltage Engineering	The Implementation and Analysis of Dual Axis Sun Tracker System to Increase Energy Gain of Solar Photovoltaic	187
	К		
Kasman Rukun	Informatics, Computer Science, Computer Engineering, Information Technology	Intelligent Decision Support System Using Certainty Factor Method for Selection Student Career	18
Kusuma Ayu Laksitowening	Informatics, Computer Science, Computer Engineering, Information Technology	Building Domain Ontology from Semi- formal Modelling Language: BPMN	57
	L		
Lasminiasih Lasminiasih	Informatics, Computer Science, Computer Engineering, Information Technology	Development of E-Commerce Applications Based on RAD Methods for MSMEs Furniture Business in Central Java	75
Linna Oktaviana Sari	Electronics, Control System and Telecommunication	Microstrip Antenna Design H-Shaped Planar Array 4 Elements Using Circular Slot for Fixed WiMAX Network 3.5 GHz Frequency	119
Linna Oktaviana Sari	Informatics, Computer Science, Computer Engineering, Information Technology	Virtual World Environment Design for Vidyanusa e-Learning System	51
M			
M Arfan	Informatics, Computer Science, Computer Engineering, Information Technology	Design of Smart Open Parking Using Background Subtraction in the IoT Architecture	7
M. Hasmil Adiya	Informatics, Computer Science, Computer Engineering, Information Technology	New Feature Vector from Freeman Chain Code for Handwritten Roman Character Recognition	67

Authors	Session title	Title	Page
M. Hasmil Adiya	Informatics, Computer Science, Computer Engineering, Information Technology	Off-line Handwritten Korean Letter Using Principle Component Analysis and Back Propagation Neural Network	72
Maman Somantri	Informatics, Computer Science, Computer Engineering, Information Technology	Design of Smart Open Parking Using Background Subtraction in the IoT Architecture	7
Mardhiyah Kharismayanda	Informatics, Computer Science, Computer Engineering, Information Technology	Tropical Diseases Web-based Expert System Using Certainty Factor	62
Marzieh Yaeghoobi	Electrical Power System, Renewable Energy and High Voltage Engineering	Application of Molecular Dynamics Study and Homo Lumo Calculation on the Ionized Air for High Voltage Engineering	171
Miftah Andriansyah	Informatics, Computer Science, Computer Engineering, Information Technology	Development of E-Commerce Applications Based on RAD Methods for MSMEs Furniture Business in Central Java	75
Missyamsu Algusri	Electrical Power System, Renewable Energy and High Voltage Engineering	Analysis of Peltier Characteristic and Cold Side Treatment for Thermoelectric Generator Module at Brick Kiln Furnace	134
Mochamad Susantok	Electronics, Control System and Telecommunication	Android-based Touch Screen Projector Design Using a 3D Camera	102
Mohd Haizal Jamaluddin	Electronics, Control System and Telecommunication	Performance Analysis of a Dielectric Resonator Antenna with Different Feeding Technique for 5G Communication	92
Mohd Zakree Ahmad Nazri	Informatics, Computer Science, Computer Engineering, Information Technology	Using Bayesian Network for Determining the Recipient of Zakat in BAZNAS Pekanbaru	12
Mohd Zakree Ahmad Nazri	Informatics, Computer Science, Computer Engineering, Information Technology	Tropical Diseases Web-based Expert System Using Certainty Factor	62
Monica Sari Hariyanto	Informatics, Computer Science, Computer Engineering, Information Technology	Design of Smart Open Parking Using Background Subtraction in the IoT Architecture	7
Muhammad Amin Sahari	Informatics, Computer Science, Computer Engineering, Information Technology	A Study on the Effects of Learning Material Towards Information Integrity IN MOODLE Learning Management System (LMS)	81
Muhammad Diono	Electronics, Control System and Telecommunication	Android-based Touch Screen Projector Design Using a 3D Camera	102
Muhammad Ihsan Zul	Informatics, Computer Science, Computer Engineering, Information Technology	Social Media Sentiment Analysis Using K- Means and Naïve Bayes Algorithm	24

Authors	Session title	Title	Page
Muhammad Nasir	Informatics, Computer Science, Computer Engineering, Information Technology	An Analysis of Instructional Design and Evaluation of Physics Learning Media of Three Dimensional Animation Using Blender Application	36
Muhammad Raka Perbawa	Informatics, Computer Science, Computer Engineering, Information Technology	Performance Evaluation of Automatic Dependant Surveillance Broadcast Data Distribution Using Named Data Networking	1
Muhammad Ramlee Kamarudin	Electronics, Control System and Telecommunication	Performance Analysis of a Dielectric Resonator Antenna with Different Feeding Technique for 5G Communication	92
Muhammad Reynaldi	Electronics, Control System and Telecommunication	Measurement Design of Sensor Node for Landslide Disaster Early Warning System	86
Muhammad Saputra	Electronics, Control System and Telecommunication	Android-based Touch Screen Projector Design Using a 3D Camera	102
Muhammad Saufi Kamarudin	Electrical Power System, Renewable Energy and High Voltage Engineering	The Effect of Pressure and Gap Distance to AC Breakdown Behavior of SF6/N2 Gas Mixtures	144
Muhammad Yusa	Electronics, Control System and Telecommunication	Early Warning Systems Using Fire Sensors, Wireless and SMS Technology	108
Mukhlidi Muskhir	Electrical Power System, Renewable Energy and High Voltage Engineering	Optimum Torque Control of Stand Alone Wind Turbine Generator System Fed Single Phase Boost Inverter	148
Muldi Yuhendri	Electrical Power System, Renewable Energy and High Voltage Engineering	Optimum Torque Control of Stand Alone Wind Turbine Generator System Fed Single Phase Boost Inverter	148
	N		
Neni Frimayanti	Electrical Power System, Renewable Energy and High Voltage Engineering	Application of Molecular Dynamics Study and Homo Lumo Calculation on the Ionized Air for High Voltage Engineering	171
Noor Azlinda Ahmad	Electrical Power System, Renewable Energy and High Voltage Engineering	Characteristics of Positive Lightning as Observed in Temperate and Tropic Regions: A Review	159
Nor Asrina Ramlee	Electrical Power System, Renewable Energy and High Voltage Engineering	Characteristics of Positive Lightning as Observed in Temperate and Tropic Regions: A Review	159
Novi Yanti	Informatics, Computer Science, Computer Engineering, Information Technology	Tropical Diseases Web-based Expert System Using Certainty Factor	62

Authors	Session title	Title	Page
Nur Farhani Ambo	Electrical Power System, Renewable Energy and High Voltage Engineering	The Effect of Pressure and Gap Distance to AC Breakdown Behavior of SF6/N2 Gas Mixtures	144
Nurcahaya Nurcahaya	Informatics, Computer Science, Computer Engineering, Information Technology	Using Bayesian Network for Determining the Recipient of Zakat in BAZNAS Pekanbaru	12
Nurhalim Dani Ali	Electrical Power System, Renewable Energy and High Voltage Engineering	The Implementation and Analysis of Dual Axis Sun Tracker System to Increase Energy Gain of Solar Photovoltaic	187
Nurhalim Dani Ali	Electronics, Control System and Telecommunication	Early Warning Systems Using Fire Sensors, Wireless and SMS Technology	108
Nurhizam Safie Mohd Satar	Informatics, Computer Science, Computer Engineering, Information Technology	A Study on the Effects of Learning Material Towards Information Integrity IN MOODLE Learning Management System (LMS)	81
	0		
Omar Fakhrul Syakirin	Informatics, Computer Science, Computer Engineering, Information Technology	New Feature Vector from Freeman Chain Code for Handwritten Roman Character Recognition	67
Othman Mohd	Informatics, Computer Science, Computer Engineering, Information Technology	A Study on the Effects of Learning Material Towards Information Integrity IN MOODLE Learning Management System (LMS)	81
	R		
Raghuraman Selvaraju	Electronics, Control System and Telecommunication	Performance Analysis of a Dielectric Resonator Antenna with Different Feeding Technique for 5G Communication	92
Raghuraman Selvaraju	Electronics, Control System and Telecommunication	Performance Analysis of a Dielectric Resonator Antenna with Different Feeding Technique for 5G Communication	92
Rahmad Abdillah	Informatics, Computer Science, Computer Engineering, Information Technology	The Effect of Class Imbalance Against LVQ Classification	42
Rahmad Kurniawan	Informatics, Computer Science, Computer Engineering, Information Technology	Using Bayesian Network for Determining the Recipient of Zakat in BAZNAS Pekanbaru	12
Rahmad Kurniawan	Informatics, Computer Science, Computer Engineering, Information Technology	Tropical Diseases Web-based Expert System Using Certainty Factor	62
Rahmat Rizal	Informatics, Computer Science, Computer Engineering, Information Technology	Virtual World Environment Design for Vidyanusa e-Learning System	51

Authors	Session title	Title	Page
Rahmat Rizal	Informatics, Computer Science, Computer Engineering, Information Technology	Off-line Handwritten Korean Letter Using Principle Component Analysis and Back Propagation Neural Network	72
Rahyul Amri	Electronics, Control System and Telecommunication	Early Warning Systems Using Fire Sensors, Wireless and SMS Technology	108
Rajagopal Nilavalan	Electronics, Control System and Telecommunication	A Survey on Medium Access Control (MAC) for Clustering Wireless Sensor Network	125
Riri Fitri Sari	Informatics, Computer Science, Computer Engineering, Information Technology	Performance Evaluation of Automatic Dependant Surveillance Broadcast Data Distribution Using Named Data Networking	1
Riri Fitri Sari	Informatics, Computer Science, Computer Engineering, Information Technology	A Review of Firefly Algorithms for Path Planning, Vehicle Routing and Traveling Salesman Problems	30
Riwayani Riwayani	Informatics, Computer Science, Computer Engineering, Information Technology	An Analysis of Instructional Design and Evaluation of Physics Learning Media of Three Dimensional Animation Using Blender Application	36
Rizo Prastowo	Informatics, Computer Science, Computer Engineering, Information Technology	An Analysis of Instructional Design and Evaluation of Physics Learning Media of Three Dimensional Animation Using Blender Application	36
Rooswhan Budi Utomo	Informatics, Computer Science, Computer Engineering, Information Technology	Development of E-Commerce Applications Based on RAD Methods for MSMEs Furniture Business in Central Java	75
	S		
Siti Norul Huda Sheikh Abdullah	Informatics, Computer Science, Computer Engineering, Information Technology	Using Bayesian Network for Determining the Recipient of Zakat in BAZNAS Pekanbaru	12
Siti Norul Huda Sheikh Abdullah	Informatics, Computer Science, Computer Engineering, Information Technology	Tropical Diseases Web-based Expert System Using Certainty Factor	62
Sri Murhayati	Informatics, Computer Science, Computer Engineering, Information Technology	Using Bayesian Network for Determining the Recipient of Zakat in BAZNAS Pekanbaru	12
Sumardi Sumardi	Electronics, Control System and Telecommunication	Measurement Design of Sensor Node for Landslide Disaster Early Warning System	86
Suryandari Sedyo Utami	Informatics, Computer Science, Computer Engineering, Information Technology	Development of E-Commerce Applications Based on RAD Methods for MSMEs Furniture Business in Central Java	75

Authors	Session title	Title	Page
Susi Rubiyati	Electronics, Control System and Telecommunication	Android-based Touch Screen Projector Design Using a 3D Camera	102
Suwanto Sanjaya	Informatics, Computer Science, Computer Engineering, Information Technology	The Effect of Class Imbalance Against LVQ Classification	42
Suwitno Suwitno	Electrical Power System, Renewable Energy and High Voltage Engineering	Barrier Discharge In Magnetic Field: The Effect Of Magnet Position Induced Discharge In The Gap	175
Suwitno Suwitno	Electrical Power System, Renewable Energy and High Voltage Engineering	Web Based Wind Energy Conversion System Monitoring	179
Suwitno Suwitno	Electrical Power System, Renewable Energy and High Voltage Engineering	Design and Analysis of Variable-Reluctance Stepping Motor as Actuator Element of New Type Automatic Transfer Switch	165
Syahril Syahril	Informatics, Computer Science, Computer Engineering, Information Technology	Intelligent Decision Support System Using Certainty Factor Method for Selection Student Career	18
Syukri Darmawan	Electrical Power System, Renewable Energy and High Voltage Engineering	The Implementation and Analysis of Dual Axis Sun Tracker System to Increase Energy Gain of Solar Photovoltaic	187
Syukri Darmawan	Electrical Power System, Renewable Energy and High Voltage Engineering	Extract Fault Signal via DWT and Penetration of SVM for Fault Classification at Power System Transmission	191
	т		
T. Brenda Chandrawati	Informatics, Computer Science, Computer Engineering, Information Technology	A Review of Firefly Algorithms for Path Planning, Vehicle Routing and Traveling Salesman Problems	30
Teddy Chandra	Informatics, Computer Science, Computer Engineering, Information Technology	New Feature Vector from Freeman Chain Code for Handwritten Roman Character Recognition	67
	V		
Vitriani Vitriani	Informatics, Computer Science, Computer Engineering, Information Technology	Intelligent Decision Support System Using Certainty Factor Method for Selection Student Career	18
	w		
Wilda Hunafa	Informatics, Computer Science, Computer Engineering, Information Technology	Tropical Diseases Web-based Expert System Using Certainty Factor	62

Authors	Session title	Title	Page
Wita Yulianti	Informatics, Computer Science, Computer Engineering, Information Technology	Comparison of the Effectiveness of Certainty Factor VS Dempster-Shafer in the Determination of the Adolescent Learning Styles	46
	Y		
Yahaya Abd Rahim	Informatics, Computer Science, Computer Engineering, Information Technology	A Study on the Effects of Learning Material Towards Information Integrity IN MOODLE Learning Management System (LMS)	81
Yangly Refli	Electrical Power System, Renewable Energy and High Voltage Engineering	Design and Analysis of Variable-Reluctance Stepping Motor as Actuator Element of New Type Automatic Transfer Switch	165
Yanuar Firdaus Arie Wibowo	Informatics, Computer Science, Computer Engineering, Information Technology	Building Domain Ontology from Semi- formal Modelling Language: BPMN	57
Yenny Desnelita	Informatics, Computer Science, Computer Engineering, Information Technology	New Feature Vector from Freeman Chain Code for Handwritten Roman Character Recognition	67
Yenny Desnelita	Informatics, Computer Science, Computer Engineering, Information Technology	Intelligent Decision Support System Using Certainty Factor Method for Selection Student Career	18
Yoga Yusfarino	Electronics, Control System and Telecommunication	Microstrip Antenna Design H-Shaped Planar Array 4 Elements Using Circular Slot for Fixed WiMAX Network 3.5 GHz Frequency	119
Yusnita Rahayu	Electronics, Control System and Telecommunication	New Design of High-Gain Beam-Steerable Dipole Antenna Array for 5G Smartphone Applications	114
	Z		
Zulkiflee Abd Rahim	Informatics, Computer Science, Computer Engineering, Information Technology	A Study on the Effects of Learning Material Towards Information Integrity IN MOODLE Learning Management System (LMS)	81

Design and Analysis of Variable-Reluctance Stepping Motor as Actuator Element of New Type Automatic Transfer Switch

Budhi Anto Department of Electrical Engineering Universitas Riau Pekanbaru, Indonesia budhianto@eng.unri.ac.id

Eddy Hamdani Department of Electrical Engineering Universitas Riau Pekanbaru, Indonesia ehamdani@eng.unri.ac.id Yangly Pamma Refli Department of Electrical Engineering Universitas Riau Pekanbaru, Indonesia yanglypamma@gmail.com

Suwitno Department of Electrical Engineering Universitas Riau Pekanbaru, Indonesia suwitnoanisa@gmail.com Fri Murdiya Department of Electrical Engineering Universitas Riau Pekanbaru, Indonesia frimurdiya@eng.unri.ac.id

Amir Hamzah Department of Electrical Engineering Universitas Riau Pekanbaru, Indonesia amir.hamzah@eng.unri.ac.id

Abstract—The method of designing a single-stack variablereluctance (VR) stepping motor for use as an actuator of the transition mechanism of the new type of automatic transfer switch is presented in this paper. The design procedure is explained and supported with several equations derived from electromechanical conversion theory. The golden ratio is introduced in design equation which relates the axial length of the stator core to the stator bore diameter. The flux density inside all parts of the machine is investigated using finite-element analysis based software package MagNet Infolytica in order to ensure the machine is operated at linear region of the core magnetization curve. The software also generates the torque profile which graphically figures the electromagnetic torque produced by the machine versus the rotor position. The material for stator and rotor cores uses high permeability magnetic material such as Carpenter silicon steel. The stepping motor will have 6 poles at the stator and 4 teeth at the rotor and will produce maximum torque of 0.3 Nm at 1 A excitation current. Based on the simulation results, the dimensions of the stator and rotor cores of VR stepping motor are as follows, motor axial length 80 mm, stator outer diameter 122 mm, stator bore diameter 72 mm, rotor outer diameter 71 mm and rotor shaft diameter 20 mm, and also the coil of each stator poles will have 800 turns.

Keywords—automatic transfer switch, single-stack VR stepping motor, cam switch, golden ratio, MagNet Infolytica.

I. INTRODUCTION

A new type of automatic transfer switch was introduced in [1,2]. The apparatus uses VR stepping motor as actuator element of the transition mechanism between 2 sources of electricity namely main supply from the grid network and secondary supply from the generating set or genset. During abnormal condition when the grid network fails to supply electricity to the load then the switch will automatically transfer its contacts to the genset so the load will be supplied by the genset. When the condition has returned to normal then the switch will reconnect the load to the grid network.

The contacts transition mechanism of the novel automatic transfer switch is explained referring to Fig. 1. This apparatus is basically a cam operated switch with two groups of contacts. The cam is directly driven by single-stack VR stepping motor. The cam switch has 3 positions, i.e. position 0 or neutral position, position I and position II. If the cam is at position I, electrical supply to the load is maintained by the grid network. If the cam is at position I to position II or from position II to position I passes through position 0. The cam motion from position I is 30 degree counter clockwise rotation, whereas its motion from position 0 to position 1 to position II is 30 degree clockwise rotation. Those patterns of cam motion can be precisely tracked by stepping motor drive, in this case stepping motor with step-angle of 30-degree.

Fig. 1. Contacts transition mechanism of new type automatic transfer switch.

An attempt to design a single-stack VR stepping motor that produces specified maximum torque for driving the cam is described in this paper. The coarse design of the machine is obtained by applying several equations that derived from

electromechanical conversion theory. The design is then fined to yield the dimensions of the machine that meet the specification by utilizing finite-element analysis based software package MagNet Infolytica.

Design of electrical machines always includes formula that comes from the designer experience and it could be possible to involve the arts into the process. In this paper, the golden ratio of 1.618 approximately [3.4] is introduced in the coarse design formula as it defines the ratio between the stator bore diameter to the axial length of stator core.

There are not many research articles dealing with design of VR stepping motor. One of them was published by Athani in 1983 that described computer-aided design for VR stepping motor, namely CADSTEP [5]. But CADSTEP only focused on VR stepping motor that has 2 stacks with a rotor neck in between. Other paper was written by Acarnley and Hughes in 1981 dealing with predicting maximum torque and speed curve characteristic of VR stepping motor [6].

A single-stack VR stepping motor has the same construction with the switched reluctance motor (SRM). The difference between them is that an SRM is operated at continuous rotation mode whereas the rotor of single-stack VR stepping motor rotates in stepping mode. Therefore the formula used for designing the single-stack VR stepping motor will much refer to the ones used for designing SRM.

There are many papers dealing with design of SRM. Kumar and Nagarajam have designed SRM for driving elevator [7]. They used software package RMxprt to simulate the SRM design in order to obtain flux linkage at aligned and unaligned positions, torque profile and efficiency of the motor. Argiolas, Muhammadi and Mierlo have reported their work of design optimization of 12/8 SRM for electric and hybrid vehicles [8]. The objectives of their work are to obtain highest average torque and minimize torque ripple with constraint of minimum material cost. Roy, Mainuddin and Sengupta have designed a 1-hp, 48-VDC, 3000-rpm 8/6 SRM for application in submersible pumps [9]. They used hand calculation in the basic coarse design and applied computer iteration with standard FEA software for modification of the design. The SRM design formula and parameters used by the above authors will become reference for designing the single-stack VR stepping motor.

II. OPERATING PRINCIPLE OF PROPOSED TRANSFER SWICTH

A. Single-stack VR Stepping Motor Construction

The stepping motor is an electric motor that converts digital pulses into rotation of its rotor. One digital current pulse fed to its stator phase winding will cause the rotor to rotate along one predetermined angle. This angle is named step-length [10] or step-angle [11]. In order to rotate in a complete one revolution (360 degrees), several current pulses must be applied to the stator phase windings. Hence the stepping motor rotates in steps with the same step.

Stepping motor has served as actuator element in many control system applications such as in printer, disc drive and CNC machines. The applications of stepping motor to drive the valves are described in [12,13]. Based on its operating

principle, Krause has classified the stepping motors into 2 types. They are the variable reluctance types and the permanent magnet types. Major difference between them lies on the existence of permanent magnet at axial of rotor shaft [10].

The single-stack VR stepping motor with 30-degree of stepangle has been chosen to drive the cam. Basic construction of the motor is determined by equation as follows [11],

$$SA = \frac{|N_S - N_R|}{N_S \cdot N_R} \times 360 \tag{1}$$

where *SA* is step angle (in degree); N_S is the number of stator poles and N_R is number of rotor teeth. From (1), step-angle of 30-degree can be obtained by choosing $N_S = 6$ and $N_R = 4$. The construction of single-stack VR stepping motor is shown in Fig. 2. One coil is wound at each stator poles and connected in series with the coil at the opposite pole to form one phase winding. Since there are 6 poles and also 6 coils at the stator, then there will be 3 phase windings. Fig. 3 shows wiring diagram of phase windings. The switches S1, S2 and S3 are used to energize and de-energize each phase windings.

Fig. 2. Construction of single-stack VR stepping motor for driving the cam switch.

Fig. 3. Wiring diagram of stator phase windings of VR stepping motor.

Applying electromechanical conversion theory, the torque T produced by 6/4 (6 stator poles and 4 rotor teeth) VR stepping motor is calculated by equation as follows [10],

$$T = (L_{\max} - L_{\min})i^2 \sin 4\theta \tag{2}$$

where L_{max} and L_{min} are machine's inductance at aligned and unaligned rotor positions, *i* is excitation current of each phase windings and θ is rotor position that refers to the aligned position. Equation (2) is derived by assuming the machine's inductance varies with sinusoidal function of rotor position and the machine is operated at linear region of magnetization curve of core material. From (2), the maximum torque T_m is as follows,

$$T_m = (L_{\max} - L_{\min})i^2 \tag{3}$$

By assuming the machine is operated at linear conditions and using core material with high permeability, the machine's inductance at the aligned position will only be determined by reluctance of the air gap, hence L_{max} is as follows,

$$L_{\max} = \mu_0 (2N)^2 \frac{A}{2g} \tag{4}$$

where μ_0 is permeability of air $4\pi \ge 10^{-7}$ H/m, N is number of turn of the coil at stator pole, A is area of stator pole face and g is the length of air gap.

By applying the ratio of L_{max}/L_{min} as one of design parameters and substitutes it into (3) and (4), then the dimensions of the machine that produces specified maximum torque can be determined.

B. Design Equations

The stepping motor must deliver enough torque to drive the cam to the required position. By applying $L_{max} = 1.2L_{min}$, the maximum torque produced by the motor is calculated by equation as follows,

$$T_m = \frac{1}{6} \frac{\mu_0 (2Ni)^2 A}{2g}$$
(5)

Rearranging (5) to determine A as follows,

$$A = \frac{2gT_m}{\frac{1}{6}\mu_0 (2Ni)^2}$$
(6)

The designing process is started by stating the specifications that consists of the information of maximum torque produced by the motor, T_m and excitation current, *i*.

The dimensions of stator and rotor cores shall refer to Fig. 4. R_{sh} is the radius of rotor shaft, R_{ry} is radius of rotor yoke, R_r is radius of outer rotor, R_{si} is radius of inner stator, R_{sy} is radius of stator yoke, R_{so} is radius of outer stator, W_s is width of stator pole and W_r is width of rotor teeth.

Area of stator pole face is calculated as follows,

$$A = W_s \times \ell \tag{7}$$

where ℓ is axial length of machine's core, the length of stator and rotor cores are taken as equal.

Applying trigonometry, R_{si} is calculated as follows,

$$R_{si} = \frac{W_s}{2\sin\frac{1}{2}\beta_s} \tag{8}$$

where β_s is stator pole angle.

Fig. 4. Dimensions of stator and rotor cores of 6/4 VR stepping motor.

Stator pole pitch τ_s (in degree) and stator slot angle σ_s are calculated as follows,

$$\tau_s = \frac{360}{N_S} = 60 \text{ degree}$$
(9)

$$\tau_s = \sigma_s + \beta_s \tag{10}$$

Bore diameter D_{si} of the machine is calculated as follows,

$$D_{si} = 2R_{si} = \frac{W_s}{\sin\frac{1}{2}\beta_s} \tag{11}$$

The golden ratio of 1.618 is introduced in design equations which relates D_{si} and ℓ as follows,

$$\frac{D_{si}}{\ell} = 1.618 \tag{12}$$

From (7), (11) and (12), we have,

$$W_s = \sqrt{1.618A\sin\frac{1}{2}\beta_s} \tag{13}$$

$$\ell = \frac{W_s}{1.618 \sin \frac{1}{2}\beta_s} \tag{14}$$

Stator pole height H_s is taken as,

$$H_s = 1.5W_s = R_{sy} - R_{si} \tag{15}$$

The width of stator yoke W_{sy} is taken as,

$$W_{sy} = \frac{1}{2}W_s \tag{16}$$

From (16) and (15), we get,

$$R_{so} = R_{sy} + \frac{1}{2}W_s \tag{17}$$

Applying geometry, the slot area A_{sl} is determined as follows,

$$A_{sl} = \frac{\sigma_s}{2} \frac{\pi}{180} (R_{sy}^2 - R_{si}^2) = \frac{\sigma_s}{2} \frac{\pi}{180} \left(\frac{3}{2\sin\frac{1}{2}\beta_s} + \frac{9}{4} \right) w_s^2 \quad (18)$$

The outer radius of rotor R_r is calculated as follows,

$$R_r = R_{si} - g \tag{19}$$

The width of rotor teeth W_r is determined by equation as follows,

$$W_r = 2R_r \sin\frac{1}{2}\beta_r \tag{20}$$

where β_r is teeth angle.

The width of rotor yoke is taken as $\frac{1}{2}W_r$, hence R_{ry} is determined as follows,

$$R_{ry} = R_{sh} + \frac{1}{2}W_r \tag{21}$$

The copper area A_{cu} which is the area of stator slot that uses for putting the phase coil is calculated as follows,

$$A_{Cu} = \frac{1}{2}k_w A_{sl} = Na = N\frac{I}{J}$$
⁽²²⁾

where k_w is window factor with value of 0.25 - 0.6. *N* is number of turns per coil, *a* is cross-sectional area of coil conductor, *I* is nominal phase current and *J* is current density. Rearranging (22) then we have minimum slot area needed for installing the pole coil as follows,

$$A_{sl} > \frac{2NI}{k_w J} \tag{23}$$

III. METHOD OF RESEARCH

The designing process is started by stating the specifications of single-stack VR stepping motor. The specifications shall include maximum torque produced by the motor, operating voltage and nominal phase current and shaft diameter. Then the magnetic material for machine's core is selected based on availability and price. The next stage is set up design parameters such as the length of air gap, window factor and current density of the coil conductor. The dimensions of main parts of the motor are determined by design equations as explained earlier. The design of the motor is then simulated under MagNet Infolytica to investigate the flux density inside all parts of the motor and to gain the torque profile of the motor. Torque profile is the graph that shows torque of the motor versus rotor position. The flux density inside all machine parts must be as high as possible but still at linear region of core magnetization curve. The machine's inductance at aligned and unaligned positions of the rotor are also resulted from the simulation process. The maximum torque produced by the designed machine is then compared to the specifications. If it is below the specifications then the process iterates with adjustments to axial length of the machine's core. The design procedure is explained by flowchart shown in Fig. 5.

Fig. 5. Flowchart of machine designing process.

IV. RESULT AND DISCUSSIONS

The actuator element of automatic transfer switch must produce enough torque to rotate the cam under nominal operating voltage and excitation current, so the specifications for the actuator must include those items. The specifications for the actuator is presented in Table 1.

 TABLE I.
 Specifications for The Actuator of Automatic Transfer Switch

Item Name	Description
Actuator type	Single-stack VR stepping motor
Number of stator poles	6
Number of rotor teeth	4
Operating voltage	12 VDC
Excitation current	1 A
Maximum torque	0.3 N.m
Shaft diameter	20 mm

The magnetic material for the stator core is the same as for the rotor core. It must have high permeability and saturation flux density. The Carpenter silicon steel is chosen for this application. This material has saturation flux density of 2.2 T. By applying NI = 800 At and g = 0.5 mm into (6), we have A = 559 mm2. Applying $\beta_s = 20$ -degree into (10), we have $\sigma_s = 40$ -degree. Applying $\beta_s = 20$ -degree into (13), we have $W_s = 12.5$ mm. Applying $W_s = 12.5$ mm into (14), we get $\ell = 44.5$ mm. Applying $W_s = 12.5$ mm into (8), (15) and (17), we get $R_{si} = 36$ mm, $R_{sy} = 54.8$ mm and $R_{so} = 61$ mm.

The rotor core dimensions are obtained as follows. From (19), we have $R_r = 35.5$ mm. Rotor teeth is made wider than stator pole. By choosing $\beta_r = 22$ -degree and then applying it into (20) and (21), we get $W_r = 13.5$ mm and $R_{ry} = 16.8$ mm.

Since NI = 800 At and I = 1 A, the number of turns per coil N = 800 turns. From (22), choosing J = 10 A/mm2, we get cross-sectional area of coil conductor a = 0.1 mm2. From (23), minimum slot area provided for installing the coil by choosing $k_w = 0.3$ is 533.3 mm2. Since the slot area that calculated from (18) yielding $A_{sl} = 597.5$ mm2, then the coil shall fit into the slot. The dimensions of the machine is presented in Table 2. Fig. 6 and Fig. 7 show the CAD drawings of 2-d cross-sectional view of stator and rotor cores.

TABLE II. DIMENSIONS OF 6/4 VR STEPPING MOTOR

Stator Dimensions	Rotor Dimensions	
Pole angle, 20-degree	Tooth angle, 22-degree	
Slot angle, 40-degree		
Bore diameter, 72 mm	Outer diameter, 71 mm	
Pole height, 18,75 mm	Tooth height, 19.48 mm	
Yoke thickness, 6.25 mm	Yoke thickness, 6.80 mm	
Outer diameter, 122 mm	Shaft diameter, 20 mm	
Air gap = 0.5 mm		
Machine axial length = 44.5 mm		
Number of turns per coil = 800		
Cross-sectional area of conductor = 0.1 mm^2		

Fig. 6. CAD drawing of 2-d cross-sectional view of stator core.

The design of the machine is then simulated in FEA software package MagNet Infolytica for investigating flux density inside the machine's parts and to generate the torque profile from which the maximum torque of the motor is obtained. Fig.8 shows the model of the motor design in MagNet Infolytica. The coil at each pole is represented by a

pair of brown squares that hems in the pole. It is clearly shown that rotor tooth is wider than stator pole. Fig. 9 shows the distribution of flux density inside the motor when phase A winding is energized. Flux density at the pole and stator yoke is about 1.5 - 1.6 T and flux density at the teeth and rotor yoke is about the same figures. Flux density inside stator and rotor parts are still below the saturation flux density of Carpenter silicon steel. Flux density at the air gap is about 1.2 - 1.4 T.

Fig. 7. CAD drawing of 2-d cross-sectional view of rotor core.

Fig. 8. Model of the VR stepping motor under MagNet Infolytica.

Fig. 9. Distribution of flux density inside the motor parts when phase A winding is energized.

MagNet Infolytica can also generate the torque profile of VR stepping motor from aligned position to unaligned position and it is shown in Fig. 10. From Fig. 10, the maximum torque produced by the motor is 0.192 N.m, so it is still below the specified torque.

Fig. 10. Torque profile of 6/4 VR stepping motor from aligned position to unaligned position.

Several adjusment must be carried out to raise the torque of the motor. This is done by increasing the axial length of the motor. The simulation is iterated for each adjusment and the result is tabulated in Table 3. From Table 3, at axial length of 80 mm, the motor produces maximum torque of 0.345 N.m thus exceeds the specification. The final design will use this value. Fig. 11 shows the tendency of axial length adjusment to the maximum torque of the motor, which tells that by increasing the axial length of the motor, the maximum torque will increase linearly.

TABLE III. AXIAL LENGTH VERSUS MAXIMUM TORQUE OF THE MOTOR

Motor's Axial Length	Maximum Torque
44.5 mm	0.192 N.m.
60 mm	0.258 N.m.
80 mm	0.345 N.m.
100 mm	0.431 N.m.

Fig. 11. Maximum torque of 6/4 VR stepping motor versus motor axial length.

V. CONCLUSIONS

The designing process of single-stack 6/4 VR stepping motor for use as actuator element of the transition mechanism of new type of automatic transfer switch has been presented in this paper. The motor must produce maximum torque of 0.3 N.m at operating voltage of 12 VDC. The dimensions of the motor are determined by design equations derived from electromechanical conversion theory by assuming the motor operated at linear region of magnetization curve of the magnetic material. The golden ratio is introduced in the design equations which relates the stator bore diameter to the axial length of the motor. Computer simulation using FEA software package MagNet Infolytica is conducted to obtain the design that meet the specifications. With Carpenter silicon steel, the final design shall use dimensions as follows, motor axial length 80 mm, stator outer diameter 122 mm, stator bore diameter 72 mm, rotor outer diameter 71 mm and rotor shaft diameter 20 mm, and also the coil at each stator poles will have 800 turns. In the future work, the design shall be fabricated and tested to verify the design procedure and also the research will be conducted to find the optimum design that meets minimum material cost.

ACKNOWLEDGMENT

The authors wish to express thanks to Dean of Engineering Faculty Universitas Riau for continually support towards this work by provision of financial support.

REFERENCES

- B. Anto, Suwitno, and A. Wahono, "Motorized transfer switch with variable reluctance stepping motor actuator," Proceeding of International Conference on Ocean, Mechanical and Aerospace Science and Engineering 2015, vol. 2, pp. 72–77, November 2015.
- [2] F. Safarudin and B. Anto, "Design and implementation of automatic transfer switch with ATMega8535 microcontroller and VR stepping motor actuator," IEEE Transl. Jurnal Online Mahasiswa Fakultas Teknik Universitas Riau, Vol.4, No. 2, Oktober 2017.
- [3] M. Akhtaruzzaman and A. A. Shafieni, "Geometrical substantiation of phi, the golden ratio and the baroque of nature, architecture, design and engineering," International Journal of Arts, vol. 1, No.1, pp. 1-22.
- [4] A. Franager, B. Anto and D. Y. Sukma, "Computer-aided-design of single-phase and three-phase transformers," IEEE Transl. Jurnal Online Mahasiswa Fakultas Teknik Universitas Riau, Vol.3, No. 2, Oktober 2016
- [5] V.V. Athani, "CADSTEP: Computer-Aided Design of Variable Reluctance Stepping Motors," Computers and Electrical Engineering, vol. 10, No.1, pp. 41-49, Pergamon Press Ltd, 1983.
- [6] P.P. Acarnley and A. Hughes, "Predicting the pullout torque/speed curve of variable-reluctance stepping motors," IEE Proceedings, vol. 128, No.2, pp. 109-113, March 1981.
- [7] A. Nagarajan and T. D. Kumar, "Design of switched reluctance motor for elevator application," IEE Proceedings, vol. 128, No.2, pp. 109-113, March 2013
- [8] O. Argiolas, A. Mohammadi, and J. V. Mierlo, "Design optimization of a 12/8 switched reluctance motor for electric and hybrid vehicles," IEE Proceedings, vol. 128, No.2, pp. 109-113, March 2017
- [9] D. Roy, S. Mainuddin and M. Sengupta, "Design, analysis, FEM validation and fabrication of a switch reluctance motor," Proceedings of National Power Electronics Conference – NPEC 2017, pp. 160-165, December 2017
- [10] P. C. Krause and O. Wasynczuk, Electromechanical Motion Devices, McGraw-Hill, 1989.
- [11] S. A. Nasar, Handbook of Electric Machines, McGraw-Hill, 1987
- [12] H. Murrenhoff, "Trends in valve development," Institute for Fluid Power Drives and Controls (IFAS), RWTH Aachen. 2003
- [13] R. R Norris and G. L. Russo, Stepper motor driven valve for thermal management and associated method of use, US Patent No. US6994310 B2. 2006